CIMA-UMI Contributions to WP2

Motivation: Climate variability and Change in southeastern South America

(gris) Anomalías de lluvia de DEF en el sudeste de Sudamérica y su correspondiente (rojo) variabilidad decadal, (verde, azul variabilidad multidecadal y (línea negra) tendencia lineal

GFDL-CM3 Model historical run

Predictability of decadal climate variability in South America

(Assessment of CMIP5 decadal predictions is in progress)

Díaz Vera, and Saurral (2016)

Regional predictability on seasonal timescales (Marisol Osman)

•Assessment of the predictability and skill of climate anomalies over South America considering a multi-model ensemble of 99 seasonal forecasts from 9 coupled global circulation models included in the Climate Historical Forecast Project (CHFP)/WCRP.

Calibrated probabilistic climate predictions on seasonal timescales (Marisol Osman)

Goal

 To apply the Ensemble Regression Technique to precipitation model outputs from WCRP/CHFP project over South America.

 To assess the performance over tropical and extratropical regions against the direct multimodel output

Data

- 11 models participating in the Climate Historical Forecast Project (CHFP). ~ 10 ensemble members each
- Precipitation forecast valid at December-January-February and June-July-August for the 1982-2006 period, made with IC from Nov and May, respectively (Lead 1 month).

Marisol Osman

CMAP precip used as observations

CPC Climate Diagnostics and Prediction Workshop

Methods

For each model:

- Detrended and Standardized ensemble
- We applied Ensemble Regression → PDF that represents each ensemble set
- We evaluated the PDF of each model at the observation → Determine the probability of each model of being the best → Model's Weight
- One-year-out cross-validation was used

Consolidation

Two ways to consolidate models

WKERNELS:

Sum Weighted PDF to get a consolidated PDF

WSEREG:

Apply EREG to the Weighted Super-Ensemble

Marisol Osman

CPC Climate Diagnostics and Prediction Workshop

DJF ACC

Simple MME

WKERNELS

WSEREG

DJF Reliab. and ROC diagrams - Tropics

Simple MME

WKERNELS

WSEREG

DJF Reliab. and ROC diagrams – East of Extratrop. Andes

Simple MME

Reliability Diagram East of Andes Above 0.9 0.8 0.7 0.6 to 0.5 0.4 0 0.3 0.2 0.5 0. 0.4 0.5 0.6 0.9 0.1 0.2 0.3 0.7 0.8 Mean Forecast Probability

Web-based tools of climate monitoring and prediction (Alfredo Rolla)

SIS web implementation

Monitoring variables visualization (tmax,tmin,tmed,pre)

CFSv2 weekly forecast anomalies visualization (pre, t2m, z200,olr)

- Visualization Libraries (building block) :
 - ✓ Openlayers (mapping)
 - ✓ D3js (Data Driven Documents)
 - ✓ D3jsgeo (Geographic projections ext.)

Calibrated probabilistic climate predictions on subseasonal timescales (Alfredo Rolla)

CFSV2 n:16 (4 weeks) GEFSv2 n:11 (2 wekks)

Climate information on subseasonal timescales: Monitoring and prediction (Mariano Alvarez)

SIS pattern: EOF1 of IS-filtered OLR' (10-90 days)

SIS index monitoring

Climate information on subseasonal timescales: Monitoring and prediction (Mariano Alvarez)

SIS pattern: EOF1 of IS-filtered OLR' (10-90 days)

SIS index predictability is to be assessed using the 45-day runs of the CFSv2, from week 1 to week 4 Well represented by the CFSv2 model, which runs operationally

-78.73242, -44.67197

February 2016